

OpenOSPFD

Claudio Jeker <claudio@openbsd.org>

Introduction

maintain routing table automatically

choose "best" path

recover from network failures (reroute)

default free routing

divide Internet into autonomous systems (AS)

- same administrative domain
- internal vs. external view
- aggregate prefixes

Introduction

► EGP

- Exterior Gateway Protocol
- Exchange prefixes between AS
- Features
 - Routing policies
 - scalable 150k routes
- BGP

► IGP

- Interior Gateway Protocol
- Routing table calculation inside an AS
- Features
 - fast response to network changes
 - neighbor discovery
- RIP, OSPF, IS-IS

Introduction - Routing Algorithms

Distance Vector Algorithms

- exchange of routing tables between neighbors
- compare tables and choose best routes
- redistribute again
- Features
 - easy to implement
 - ability to express routing policies
- Problems
 - slow propagation of changes
 - count to infinity
 - Path distance vector algorithm does not suffer from this problem
- Examples
 - RIP, BGP (path distance vector)

Introduction - Routing Algorithms

Link-State Algorithms

- every router sends out his link-states
- all router keep a database of all link-states
- calculates shortest path
- Features
 - good convergence properties
 - automatic neighbor discovery
- Problems
 - complex because the database needs to be in sync
- Examples
 - IS-IS, OSPF

Most used IGP

IPv4 only -- OSPFv3 implements IPv6

- Link State Protocol
- Implemented as own IP protocol (not TCP or UDP)
- Router discovery via multicast
- Support for areas to divide network
- IETF designed
 - super complex and badly documented protocol

OSPF - Link-State Database

5 different Link-State announcements

- router LSA
- network LSA
- summary LSA for networks
- summary LSA for AS border routers
- AS external LSA
- All LS databases in area need to be in sync
- Routing table is generated by a shortest-path-first calculation using router and network LSA.

remaining LSA types are evaluated and added in a second step

- Hello Packets sent all 10 seconds
- sent via multicast
- bidirectional communication enforced
 - a list of all routers from where a hello was received lately included in hello

Designated Router (DR)

- only on broadcast networks
- reduces the amount of packets sent
- DR does flooding and retransmission on behalf of all other routers
- Backup designated router in case DR fails
- complex and error prone (imprecise RFC)

OSPF - Database Synchronisation

Initial synchronisation

- exchange of database description packets in a way like tftp
- request of LSA entries that are newer
- receive of requested LSA
- retransmit LS requests after a time-out (packet loss)

Flooding

- flooding keeps all LS DBs in sync
- every router resends new LS updates
- every LS update needs to be acknowledged
- retransmit LS updates after a time-out (packet loss)

OSPF - Areas

- Divide large network into smaller areas
- every area is connected to the backbone area
- if no direct link is available a virtual link is required
- additional duties for area border routers
 originating summary LSA into connected areas
- network needs to be designed for areas!
- in most cases not needed

Major points: secure, stable, efficient
 steal as much as possible

"stolen" from OpenBGPD

- 3 processes
- privilege separation
- buffer management
- imsg framework for internal messaging
- kroute routing table management

differences

- raw IP packets instead of TCP session
- more concurrent timers and finite state machines
- use of libevent instead of poll

Overview

Responsible for getting the routes into the kernel

- Tracks interface link states
- Maintains its own copy of the kernel routing table
- Fetches the kernel routing table and interface list on startup

OSPF Engine

Listens on the raw IP socket

Verifies and processes the packets

Interface finite state machine
 DR / BDR election process

Neighbor finite state machine

Initial Database Exchange

Reliable flooding of LS updates (retransmits)

OSPF Engine - Interface FSM

OSPF Engine - Neighbor FSM

stores LS database

calculates SPF tree

informs parent process about routing table changes

redistribution of networks (ASBR)

summary LSA generation if ABR

shows current status of ospfd

Important commands:

ospfctl show neighbor

cjeker@diavolezza:~> ospfctl show neighbor

ID 1	Pri	State	DeadTime	Address	Interface
0.0.0.1	T	INTT/DROTHER	00:00:33	62.48.4.38	IXP0
62.48.4.5	1	FULL/DR	00:00:30	62.48.4.5	fxp0
62.48.4.3	1	FULL/BACKUP	00:00:30	62.48.4.3	fxp0

ospfctl show interface

cjeker@diavolezza:~> ospfctl show interface

Interface fxp0 is 2, line protocol is UP Internet address 62.48.4.4/24, Area 0.0.0.0 Router ID 62.48.4.4, network type BROADCAST, cost: 10 Transmit delay is 1 sec(s), state DROTHER, priority 1 Designated Router (ID) 62.48.4.5, interface address 62.48.4.5 Backup Designated Router (ID) 62.48.4.3, interface address 62.48.4.3 Timer intervals configured, hello 10, dead 40, wait 40, retransmit 5 Hello timer due in 00:00:04 Neighbor count is 3, adjacent neighbor count is 2

ospfctl show database

cjeker@diavolezza:~> ospfctl show database

Router Link States (Area 0.0.0.0)

Link ID	Adv Router	Age	Seq#	Checksum		
0.0.0.1	0.0.0.1	213	0x80000002	0x7d25		
62.48.4.3	62.48.4.3	292	0x80000004	0xadc1		
62.48.4.4	62.48.4.4	296	0x80000004	0xabc0		
62.48.4.5	62.48.4.5	293	0x80000002	0x2f43		
	Net Link States (Area 0.0.0.0)					
Link ID	Adv Router	Age	Seq#	Checksum		
62.48.4.5	62.48.4.5	217	0x80000004	0x8774		

ospfctl show database - detailed output

cjeker@diavolezza:~> ospfctl show database router

Router Link States (Area 0.0.0.0)

```
LS age: 269

Options: *|*|-|-|-|E|*

LS Type: Router

Link State ID: 0.0.0.1

Advertising Router: 0.0.0.1

LS Seq Number: 0x8000002

Checksum: 0x7d25

Length: 48

Flags: *|*|*|*|-|-|-

Number of Links: 2

Link connected to: Stub Network

Link ID (Network ID): 192.168.5.0

Link Data (Network Mask): 255.255.255.0

Metric: 12

Link connected to: Transit Network

Link ID (Designated Router address): 62.48.4.5

Link Data (Router Interface address): 62.48.4.38

Metric: 20
```

```
# global configuration
router-id 10.28.4.65
# route redistribution
redistribute connected
redistribute static
# areas
area 0.0.0.0 {
        interface lo1
        interface em0 {
                  metric
                                   10
                  auth-type
                                   crypt
                  auth-md-keyid
                                   1
                  auth-md
                                   1
                                            "sdf&*di12"
        }
        interface vlan202 {
                  metric
                                   50
                  auth-type
                                   crypt
                  auth-md-keyid
                                   5
                  auth-md
                                   5
                                            "Flkjds/8id@"
        }
}
```

- carp Common Address Redundancy Protocol
- ospfd routing daemon using network redundancy for re-routing conflicts!
 - ... but very powerful if used correctly
- Impossible to run OSPF on a carp interface
- Instead use carp to connect a LAN with servers to an OSPF cloud
 - more than one ospf router
 - default gateway on servers is carped and does not change
- Use a "passive" carp interface and multiple ethernet interfaces to connect router to the OSPF cloud; link-state of carp interface is tracked
 - route in the OSPF cloud will always point to the active carp interface

"metric does not work"
 high metric on a interface seems to be ignored

OSPF calculates path through the network

• reverse path may have a different cost

On broadcast networks only the metric into the network is added
 to control incoming traffic outgoing interfaces need to be adjusted

Config reload

Even better carp support

• Making announcements dependent on interface link state

Interface group support

- Mostly for dynamic clonable interfaces
- Makes it possible to configure interfaces that are not present on startup

"redistribute bgp" and especially dependent on route label

- Possibility to add aggregation networks for areas
 - Only needed on ABRs.
 - Telling to add 10.1.128.0/19 instead of 10.1.129.64/28 as soon as an area gets active.
- Conversion table of route labels to AS-ext route ID tags and especially back

Finally commit all M I have in my trees

Make it possible to determine if all routers are in sync

Make it possible to create a network graph from the LS DB
 creates nice coloured network graphs for web pages

Add a way to calculate the rib for any router in the network
 The LS DB includes all necessary information
 perfect for monitoring systems

After all is done I may perhaps start on OSPFv3 aka IPv6 support

Esben Norby <norby@openbsd.org>, who started with the OpenOSPFD project and implemented large parts of it.

Andre Oppermann <oppermann@networx.ch> and Internet Business Solutions AG for "sponsoring" my work on OpenOSPFD.

Henning Brauer <henning@openbsd.org> and the rest of the OpenBSD gang for a lot of code to steal from.